Multi-Agent DSL Framework

多智能体领域特定语言框架

复杂事件处理的新范式 / A New Paradigm for Complex Event Processing

高性能 / High Performance 可扩展 / Scalable 智能优化 / Intelligent Optimization
🤖
🔗
📊
🎯

项目概述 / Project Overview

随着大语言模型(LLMs)在多智能体系统中的广泛应用,任务往往需要多轮推理、结构化输出和智能体间的协作决策。然而,现有框架普遍缺乏明确支持任务分解、智能体通信和运行时优化的领域特定语言(DSL)。

With the widespread adoption of Large Language Models (LLMs) in multi-agent systems, tasks often require multi-round reasoning, structured outputs, and collaborative decision-making among agents. However, existing frameworks generally lack a Domain-Specific Language (DSL) that explicitly supports task decomposition, agent communication, and runtime optimization.

受SGLang(NeurIPS 2024)启发,我们引入了一个新颖的多智能体DSL框架,旨在统一高级智能体编程与高效低级执行。这项工作弥合了面向智能体的编程与高性能运行时之间的差距,为多智能体协作、结构化生成和AI系统工程研究提供了一个可重现和可扩展的平台。

Inspired by SGLang (NeurIPS 2024), we introduce a novel Multi-Agent DSL framework designed to unify high-level agent programming with efficient low-level execution. This work bridges the gap between agent-oriented programming and high-performance runtimes, offering a reproducible and extensible platform for research in multi-agent collaboration, structured generation, and AI systems engineering.

核心创新 / Core Innovations

扩展DSL原语 / Extended DSL Primitives

引入spawnroutegatherwith_slacontractblackboardonemit等原语,明确建模任务分解、路由、约束和协作。

We introduce primitives like spawn, route, gather, with_sla, contract, blackboard, on, and emit to explicitly model task decomposition, routing, constraints, and collaboration.

运行时优化 / Runtime Optimizations

RadixTrie前缀缓存:通过在不同任务间复用公共前缀来减少冗余计算。
缓存感知调度:优先处理具有更长前缀的任务,提高吞吐量和响应时间。

RadixTrie Prefix Caching: Reduces redundant computations by reusing common prefixes across different tasks.
Cache-Aware Scheduling: Prioritizes tasks with longer prefixes to improve throughput and response time.

结构化输出生成 / Structured Output Generation

支持Regex和轻量级cFSM验证,确保输出符合所需格式。

Supports Regex and lightweight cFSM validation to ensure outputs conform to the required format.

事件驱动架构 / Event-Driven Architecture

内置EventBus支持智能体间的异步通信和协调。

A built-in EventBus enables asynchronous communication and coordination among agents.

全栈可重现性 / Full-Stack Reproducibility

框架提供集成示例、实验、单元测试、A/B比较工具和CLI,实现零依赖执行。

The framework is delivered with integrated examples, experiments, unit tests, A/B comparison tools, and a CLI for zero-dependency execution.

系统架构图 / System Architecture Diagrams

实验结果 / Experimental Results

我们的框架在多个基准测试中展现了卓越的性能表现。 / Our framework demonstrates exceptional performance across multiple benchmark tests.

智能城市性能 / Smart City Performance

85%+ 缓存命中率 / Cache Hit Rate
<100ms 平均延迟 / Avg Latency
+40% 吞吐量提升 / Throughput Gain
Cache Hit Rate
缓存命中率趋势 / Cache Hit Rate Trend
Latency Distribution
延迟分布 / Latency Distribution
Throughput
吞吐量变化 / Throughput Changes

自动驾驶性能 / Autonomous Driving Performance

-60% 决策时间 / Decision Time
95.2% 成功率 / Success Rate
稳定 系统稳定性 / System Stability
Decision Time
决策时间CDF / Decision Time CDF
Event Type Distribution
事件类型分布 / Event Type Distribution
Cache Performance
缓存性能 / Cache Performance

缓存优化效果 / Cache Optimization Results

显著 延迟改善 / Latency Improvement
大幅 吞吐量提升 / Throughput Boost
优化 资源利用 / Resource Utilization
Cache Hit Comparison
缓存命中率对比 / Cache Hit Rate Comparison
Latency Comparison
延迟CDF对比 / Latency CDF Comparison
Throughput Comparison
吞吐量对比 / Throughput Comparison

演示与结果 / Demo & Results

我们的框架在两个具有挑战性的用例中得到了验证:智能城市和自动驾驶。 / Our framework has been validated in two challenging use cases: Smart City and Autonomous Driving.

🚀 如何查看完整演示 / How to View Full Demo

选择最适合您的部署方式,快速体验我们的多智能体DSL框架 / Choose the deployment method that suits you best to quickly experience our Multi-Agent DSL framework

💻

本地开发环境 / Local Development Environment

简单 / Easy
1
环境准备 / Environment Setup

确保系统已安装Python 3.8+和Node.js 16+ / Ensure Python 3.8+ and Node.js 16+ are installed

python --version && node --version
2
克隆项目 / Clone Repository

获取项目源代码 / Get the project source code

git clone https://github.com/Max-YUAN-22/Final-DSL.git
3
安装依赖 / Install Dependencies

安装Python和Node.js依赖包 / Install Python and Node.js dependencies

pip install -r requirements.txt
cd frontend && npm install
4
启动服务 / Start Services

分别启动后端和前端服务 / Start backend and frontend services separately

# 终端1: 启动后端 / Terminal 1: Start Backend
python backend/main.py

# 终端2: 启动前端 / Terminal 2: Start Frontend
cd frontend && npm start
5
访问系统 / Access System

在浏览器中打开系统 / Open the system in your browser

http://localhost:3001
🐳

Docker容器化部署 / Docker Containerized Deployment

中等 / Medium
1
构建镜像 / Build Image

使用Dockerfile构建项目镜像 / Build project image using Dockerfile

docker build -t multi-agent-dsl:latest .
2
运行容器 / Run Container

启动Docker容器并映射端口 / Start Docker container with port mapping

docker run -d -p 3001:3001 --name multi-agent-dsl multi-agent-dsl:latest
3
验证部署 / Verify Deployment

检查容器状态和日志 / Check container status and logs

docker ps
docker logs multi-agent-dsl
☁️

云服务部署 / Cloud Service Deployment

高级 / Advanced
🌐 AWS部署 / AWS Deployment

使用AWS ECS或EC2部署 / Deploy using AWS ECS or EC2

# 使用AWS CLI部署 / Deploy using AWS CLI
aws ecs create-service --cluster your-cluster --service-name multi-agent-dsl
🔵 Azure部署 / Azure Deployment

使用Azure Container Instances / Deploy using Azure Container Instances

# 使用Azure CLI部署 / Deploy using Azure CLI
az container create --resource-group your-rg --name multi-agent-dsl
🟢 Google Cloud部署 / Google Cloud Deployment

使用Google Cloud Run / Deploy using Google Cloud Run

# 使用gcloud CLI部署 / Deploy using gcloud CLI
gcloud run deploy multi-agent-dsl --source .

🎯 演示功能特性 / Demo Features

📊
实时监控 / Real-time Monitoring

系统性能指标实时展示 / Real-time system performance metrics display

🔄
事件处理 / Event Processing

智能事件路由和处理 / Intelligent event routing and processing

缓存优化 / Cache Optimization

RadixTrie前缀缓存效果展示 / RadixTrie prefix caching effect demonstration

🎮
交互式控制 / Interactive Control

动态调整系统参数和配置 / Dynamically adjust system parameters and configuration

1000+
事件/秒 / Events/sec
85%
缓存命中率 / Cache Hit Rate
99%
系统可用性 / System Uptime

应用场景 / Use Cases

智能城市 / Smart City

通过智能事件处理优化城市服务,如311事件响应。实现亚秒级处理时间,提高城市管理效率。 / Optimizing urban services like 311 incident response through intelligent event processing. Achieves sub-second processing times for critical events.

  • 缓存命中率优化 / Cache Hit Rate Optimization
  • 延迟分布优化 / Latency Distribution Optimization
  • 实时事件处理 / Real-time Event Processing

自动驾驶 / Autonomous Driving

增强自动驾驶车辆协调的安全性和交通流量。支持快速、关键的决策制定,用于重新路由和场景清理。 / Enhancing safety and traffic flow in autonomous vehicle coordination. Enables rapid, critical decision-making for rerouting and scene clearance.

  • 事件类型分布 / Event Type Distribution
  • 决策时间优化 / Decision Time Optimization
  • 安全场景管理 / Safety Scene Management

更多应用场景 / More Use Cases

我们的框架具有广泛的适用性,可以应用于多个领域。 / Our framework has broad applicability across multiple domains.

🏥

智慧医疗物联网 / Smart Healthcare IoT

实时监控患者生命体征,智能预警异常情况,优化医疗资源配置。

Real-time monitoring of patient vital signs, intelligent early warning of abnormalities, optimizing medical resource allocation.

  • 患者监护 / Patient Monitoring
  • 药物管理 / Medication Management
  • 设备维护 / Equipment Maintenance
🔬

医学影像智能分析 / Medical Image Analysis

AI辅助诊断,提高影像识别准确率,缩短诊断时间。

AI-assisted diagnosis, improving image recognition accuracy and reducing diagnosis time.

  • CT/MRI分析 / CT/MRI Analysis
  • 病理检测 / Pathology Detection
  • 诊断辅助 / Diagnostic Assistance
💰

量化金融情感分析 / Quantitative Finance Sentiment

实时分析市场情绪,预测价格波动,优化投资策略。

Real-time market sentiment analysis, price volatility prediction, investment strategy optimization.

  • 情绪监控 / Sentiment Monitoring
  • 风险评估 / Risk Assessment
  • 交易决策 / Trading Decisions
🛰️

遥感城镇分析 / Remote Sensing Urban Analysis

卫星图像分析,城市规划优化,环境监测预警。

Satellite image analysis, urban planning optimization, environmental monitoring and early warning.

  • 土地利用 / Land Use
  • 环境监测 / Environmental Monitoring
  • 灾害预警 / Disaster Warning
🏭

智能制造 / Smart Manufacturing

生产线优化,质量检测,预测性维护。

Production line optimization, quality inspection, predictive maintenance.

  • 质量控制 / Quality Control
  • 设备维护 / Equipment Maintenance
  • 生产优化 / Production Optimization
🌐

网络安全 / Cybersecurity

威胁检测,异常行为分析,安全事件响应。

Threat detection, anomaly behavior analysis, security incident response.

  • 入侵检测 / Intrusion Detection
  • 恶意软件分析 / Malware Analysis
  • 安全响应 / Security Response